Smart Hive

Nicholas Paschke | Ahmed Alsamahi | Neil Sankineni | Sidney Amber-Messick | Ismael Torres | Ergi Masati

Executive Summary

• Support for Bee Population

Mesh Network Data Accumulation

• Website for Beekeepers

Problem Statement

Motivation [19]

- Produce a low-cost sensor network
- Use sensor networks data
- The network will be automated

Needs [22]

- Device must measure key parameters such as temperature, humidity, C02, weight, and illumination levels of the hive
- Wirelessly connected to Wi-Fi or be able to access data remotely
- Low-cost and automated or require minimal tampering

Identification of Needs

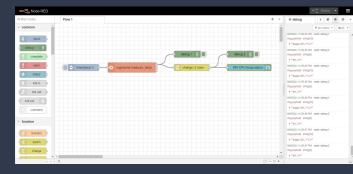
- Multi-sensor device to measure significant data for analysing the health of beehives or other apiculture related environments
 - examples of such sensors would include CO2/air quality detectors, weight scales for supers/comb frames, temperature (where appropriate), illumination of interior of hive
 - b. secondary objective would be to have the ability to have a modular approach to the sensor apparatus
- 2. he device must be wirelessly connected to Mason's Wi-Fi or be able to access data remotely
 - his data must automatically be archived and have the ability to be extrapolated over time for further analysis of long-term health of the apiculture subject
- 3. The measurements of the product must be automated or require minimal tampering for the end user
- 4. The final product must not exceed power consumption than the surroundings of the environment is able to provide
- 5. The solution/product must not exceed or greatly adjust the dimensions of a colony
- 6. The User must be able to still complete daily care of the bees after installation of the Product
 - a. such actions include but are not limited to: feeding, removing components, removing super frames, the smoking of bees, and the splitting of colonies
- 7. The product must in no way shape, or form harm, disable, or interfere with colony structure or development.
- 8. The product must be "accessible to a 13 year old" and have "less than half a page of instruction for use"
- Developed solution must be reasonable for the end user to afford given the utility of the product (competitive market price is approximately \$150-200 maximum for extraneous tools for apiculture)
 - a. This price is for the final development of the product
- 10. Final product must be capable of withstanding weather conditions inside of the hive if embedded within the hive
- 11. Final product must not interfere with the location or convenience of the colony
- 12. The end user has also included further bonus objectives which will be listed below
 - a. Sensing the population of varroa mites within a hive would greatly innovate the apiculture industry
 - b. determining/predicting the event of a "swarm" or overpopulation of a hive before it occurs would be "a big hit"
 - c. Being able to track a queen would be beneficial for beekeepers within our target Demographic

Measured requirements

The following list was gathered from the customer of note in a direct interview and cited within a previous project conducted on the exact grounds.

- 1. The power source provided on premises is an array of 4 nickel batteries (3.3 V Power supply required for Raspberry Pi)
- 2. The general maintenance of the apiary is short intermittent visits 4 times each week
- 3. Hives during acclimate temperatures, are opened to inspect the hive's health
- 4. A range of 1 to four sensors per frame was found to be accurate enough for the information required of the customer.
- 5. Light is found to be a key disturbance for the hives and must be kept to a minimum if not completely nullified [23]
- 6. 0.375 of an inch was found to be the minimum gap which
- 7. The expected temperature within the hive is 90-93 degrees Fahrenheit provided by the client, while expected humidity within the hive to support healthy colonies is 40%-60% [22]
- 8. The distance from the main power supply to the hives is less than 15 feet
- 9. System should be functional for 1 month, specified by client

Market and Application Review


- Smart Hive 2.0 which was deployed in 2020 at George Mason University [19]
- The smart hive uses six MCP9808 sensors to measure temperature in bee hives, and includes Raspberry-Pi boards that transmit data over wifi [20]
- Companies (Arnia, Solution Bee, Broodminder) make smart hives using expensive parts, no website available. Documented by Frank Linton [21]
- Our improvements: More data collected (CO2, humidity), lower cost sensors, more expandable software/website

Approach

<pre>const handleChangeRowsPerPage = (event) => { setRowsPerPage(+event.target.value); }</pre>	
<pre>setPage(0);</pre>	
<pre><paper '100%',="" 'hidden'="" overflow:="" sx="{{" theme="{theme}" width:="" }}=""></paper></pre>	
<tablecontainer 440="" maxheight:="" sx="{{" theme="{theme}" }}=""></tablecontainer>	
<table aria-label="sticky table" stickyheader="" theme="{theme}"></table>	
<tablehead (there)="" there=""></tablehead>	
<tableroy theme="{theme}"></tableroy>	
{columns.map((column) => (
theme={theme}	
key={column.id}	
align={column.align}	
<pre>style={{ minWidth: column.minWidth }}</pre>	
<tablebody theme="{theme}"></tablebody>	
<pre>.slice(page * rowsPerPage, page * rowsPerPage + rowsPerPage)</pre>	
.map((row) => {	
<tablerow hover="" key="{row.code}" role="checkbox" tabindex="{-1}" theme="{theme}"> {columns.map((column) => {</tablerow>	
const value = row[column.id];	
const value = rowneocount top;	

Server

BeeBox

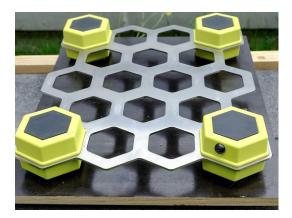
Smart Frame

Server

- Cloud-based solution or microcontrollers for Kubernetes
- MERN stack or HTTP server via python script

BeeBox

- Microcontrollers such as an ESP32, Beaglebone Black, or Raspberry pi zero
- Will need to transmit data schema and read information from sensors


SmartFrame

- GPIO or microcontrollers on frames
- Beebox would make frames more expensive

Alternative Sensors

- Weight/Illumination were bonuses identified by the customer
- Low cost, accuracy important

Decision matrix for parts

*All parts and datasheets are cited at the end of the presentation

Temperature

	Weight ~>	9	10	5	2	10	
Part Number:		Cost	Durability	Size	Digital/Analog	Accuracy	Final Rank
DHT22		9	6	9	10	9	43
DS18B20		10	3	7	10	8	38
DHT11		9	6	9	10	7	41
LM35		6	4	9	5	10	34

Humidity

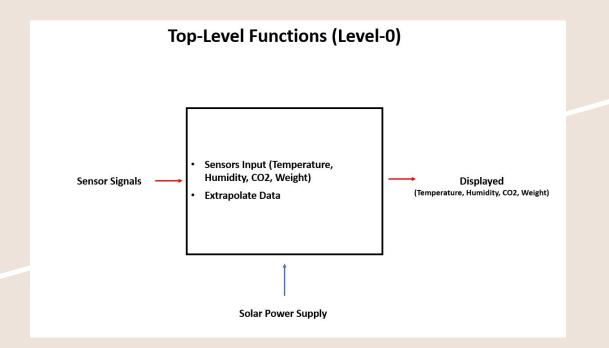
	Weight ->	9	10	5	2	10	
Part Number:		Cost	Durability	Size	Digital/Analog	Accuracy	Final Rank
BME280		5	6	9	10	7	37
SHT40		6	7	10	10	8	41
DHT22		9	6	9	10	9	43
DHT11		9	6	9	10	8	42

Illumination

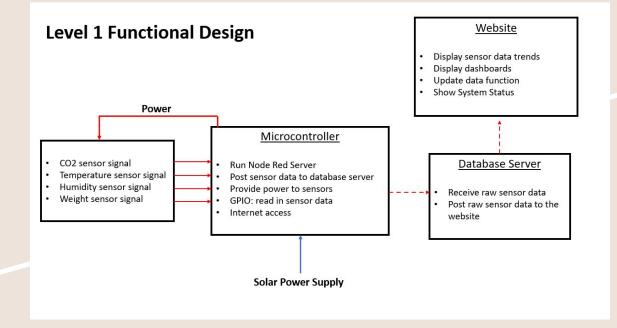
	Weight ->	9	10	5	2	10	
Part Number:		Cost	Durability	Size	Digital/Analog	Accuracy	Final Rank
LM393		10	6	8	10	8	42
UUGEAR LSM		9	6	8	10	8	41
KY-018		9	3	9	10	8	39

CO2

	Weight .>	9	10	5	2	10	
Part Number:		Cost	Durability	Size	Digital/Analog	Accuracy	Final Rank
K30		4	5	7	10	8	34
SCD30		6	5	7	10	8	36
EE895		5	6	8	10	9	38
CCS811		7	4	s	5	7	31

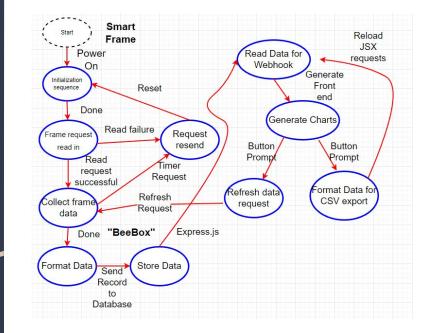

Weight

	Weight .>	9	10	5	2	10	
Part Number:		Cost	Durability	Size	Digital/Analog	Accuracy	Final Rank
HX711		7	7	9	5	10	38
H26R0		7	5	10	5	8	35
MF02A-N- 221-A01		8	3	8	0	8	27


System Design

Functional Decomposition

Top-Level Functions: Level-0



Functional Design: Level-1

System

- Raspberry Pi
- 5v Power supply
- 26 ³/4" solar panel
- Node Red
- MongoDB

Weight [1][4][12]

- Monitoring the weight of a beehive gives beekeepers an indication of the start and stop of nectar flow
- Sudden drop in weight can suggest that the bee colony has swarmed
 - Hive itself has been unusually affected by external factors and needs to be seen
- Comparing weight between the hives gives the beekeeper a sense of productivity [23]

Temperature [7]

- Alerts beekeepers to dangerous conditions within the hive including excessive heat
- Indicated that the hive needs to be moved or properly ventilated
- Low heat indicates that the hive needs to be insulated from cold water [23]

C02 [20]

- Levels allow beekeepers to better ventilate their hives
- Bees can tolerate higher levels of c02 than humans
- High levels can still kill them
 [23]

Humidity [22]

- Honey production within an excessive amount of humidity can be dangerous to bee colonies
- High humidity levels alert beekeepers that moisture build-up is occurring
- Better ventilation and water removal is needed. [23]

Illumination

- Light is an important indicator of potential threats to a beehive, including a swarm [23]
- Sensors will indicate what light levels are healthy and not
- Levels can pick up on threats to a hive that other sensors may not indicate

Preliminary Experimental Plan

Experiments

Experiment #1

Testing if sensors work with our microcontroller (Raspberry Pi), and are accurate compared to readings we receive with measuring tools within a certain percentage

Experiment #2

Testing if our database receives and transmits data to our online tool reliably over many trials and circumstances – introducing hazards

Preliminary Project Plan

- 1. Interfacing sensors with microcontroller
- 2. Sending sensor data to the database using Node-RED
- 3. Implementing the database server with MongoDB
- Developing our online tool for displaying data, sending data from server to website

Potential Problems

- Propolis
- Connectivity
- Weather Conditions
- Power consumption
- Website lag hosting front end and back end concurrently

Website Demo

- The website will be open source once a build is complete, allowing future students to update our design
- The website will additionally allow for downloads and renaming of all the temperature data in CSV file format

The End.

Thank you!

References

(accessed Nov. 10, 2022).

[1] "39.6mm square active area application - mouser electronics." [Online]. Available:	[15] N. Kalaburgi, "Working of DHT sensor - dht11 and					
https://www.mouser.com/datasheet/2/13/MF02A_c3_a2_c2_96_c2_a1_A01-2634350.pdf. [Accessed: 10-Nov-2022].	DHT22," NerdyElectronics, 27-Jan-2021. [Online]. Available: https://nerdyelectronics.com/working-of-dht-sensor-dht11-and-dht22/. [Accessed: 10-Nov-2022].					
 "ams Datasheet CCS811 Ultra-Low Power Digital Gas Sensor for Monitoring Indoor Air Quality." [Online]. Available: <u>https://cdn.sparkfun.com/assets/learn_tutorials/1/4/3/CCS811_Datasheet-DS000459.pdf</u> 	[16] "SHT4x 4 th Generation, High-Accuracy,					
[3] "Analog Embedded Processing Semiconductor Company	Ultra-Low-Power, 16-bit Relative Humidity and Temperature Sensor Platform." Accessed: Nov. 10, 2022. [Online]. Available:					
ti.com." [Online]. Available:	https://download.mikroe.com/documents/datasheets/SHT40%20Datasheet.pdf					
https://www.ti.com/lit/ds/symlink/lm35.pdf. [Accessed: 10-Nov-2022].	[17] "UUGear Light Sensor Module (4-Wire, with both Digital and Analog Output) UUGear." https://www.uugear.com/product/uugear-light-sensor-module-4-wire-with-both-digital-and-analog-output/ (accessed Nov.					
[4] Avia Semiconductor, "AVIA SEMICONDUCTOR 24-Bit Analog-to-Digital Converter (ADC) for Weigh Scales	10, 2022).					
DESCRIPTION," 2009. [Online]. Available: https://cdn.sparkfun.com/datasheets/Sensors/ForceFlex/hx711_english.pdf	[18] J. Cazier, "Peering into the future a path to the genius hive," Peering into the Future a Path to the Genius Hive, 26-Mar-2018. [Online]. Available: https://www.beeculture.com/peering-into-the-future-a-path-to-the-genius-hive/. [Accessed: 12-Nov-2022].					
[5] "Click DS18B20 prorammale resoltion 1-wire diital thermometer." [Online]. Available: https://datasheets.maximintegrated.com/en/ds/DS18B20.pdf. [Accessed: 10-Nov-2022].	[19] A. lofaro, "Smart hive 2.0 installed at GMU and USDA," Lofaro Labs Robotics. [Online]. Available: https://lofarolabs.org/2022/02/14/smart-hive-2-0-installed-at-gmu-and-usda/. [Accessed: 12-Nov-2022].					
[6] "Datasheet Sensirion SCD30 Sensor Module," 2020. Accessed: Nov. 10, 2022. [Online]. Available:						
https://sensirion.com/media/documents/4EAF6AF8/61652C3C/Sensirion_CO2_Sensors_SCD30_Datasheet.pdf	[20] Smarthive.lofaro.net. [Online]. Available: https://www.smarthive.lofaro.net/. [Accessed: 12-Nov-2022].					
[7] "Digital-output relative humidity & temperature sensor/module DHT22" [Online]. Available: https://www.sparkfun.com/datasheets/Sensors/Temperature/DHT22.pdf. [Accessed: 10-Nov-2022].	[21] F. Linton, "Welcome to Colonymonitoring.com!," colonymonitoring.com. [Online]. Available: https://colonymonitoring.com/. [Accessed: 12-Nov-2022].					
	[22]R. F, "Humidity in the Hive," Arnia, 26-Apr-2021. [Online]. Available: https://www.arnia.co/post/humidity-in-the-hive. [Accessed: 12-Nov-2022].					
 [8] "Electronic Components Distributor - Mouser Electronics." [Online]. Available: https://www.mouser.com/datasheet/2/758/DHT11-Technical-Data-Sheet-Translated-Version-1143054.pdf. [Accessed: 10-Nov-2022]. 	[23]"Smart hives: A radical rethink of Beekeeping," The Best Bees Company, 17-Mar-2022. [Online]. Available: https://bestbees.com/2021/07/27/smart-hives/. [Accessed: 30-Sep-2022].					
[9] "Itbrainpower.net." [Online]. Available: https://itbrainpower.net/downloadables/BST-BME280-DS002-1509607.pdf. [Accessed: 10-Nov-2022].						
[10] "K30 pdf, K30 Description, K30 Datasheet, K30 view ::: ALLDATASHEET pdf1.alldatasheet.com. https://pdf1.alldatasheet.com/datasheet-pdf/view/611300/SPSEMI/K30.html (accessed Nov. 10, 2022).						
[11] K. S. Yeo, M. C. Chian, T. C. Wee Ng, and D. A. Tuan, "Internet of things: Trends, challenges and applications," 2014 International Symposium on Integrated Circuits (ISIC), 2014.						
[12] "Load Cell Sensor (H26R0x)," <i>Hexabitz</i> , Jun. 30, 2019.						
https://hexabitz.com/product/load-cell-sensor-h26r0x/ (accessed Nov. 10, 2022). [13] "Miniature Sensor Module for CO 2 Temperature and						
Barometric Pressure EE895." Accessed: Nov. 10, 2022. [Online]. Available: https://www.epluse.com/fileadmin/data/product/ee895/datasheet_EE895.pdf						
[14] M. Zolnierczyk, "Light sensor modules KY-018 and LM393 (3 and 4 pin) for a Raspberry PI or Arduino," NotEnoughTech, Aug. 21, 2016. https://notenoughtech.com/raspberry-pi/light-sensor-lm393-ky018/						
(assessed Nav. 10.202)						